# Исследование анизотропных молекулярных вращений с помощью ЭПРспектроскопии с переносом СВЧ насыщения в 2-мм диапазоне

В.И. Криничный, О.Я. Гринберг, А.А. Дубинский, В.А. Лившиц, Ю.А. Бобров, Я.С. Лебедев

## Введение

ЭПР спектроскопия с переносом СВЧ насыщения (ЭПР ПН) существенно расширяет возможности спиновых меток в исследовании молекулярной динамики, позволяя регистрировать молекулярные вращения в диапазоне времен корреляции  $10^{-7} - 10^{-3}$  с, недоступном для обычной, линейной по СВЧ полю спектроскопии ЭПР /1,2/. В конденсированной фазе (стеклах, кристаллах, полимерах, а также в биологических системах) вращение молекул, как правило, анизотропно, поэтому определение параметров анизотропного вращения является одной из принципиальных проблем ЭПР ПН. Как показывает теоретический анализ /3,4/, эти параметры в общем случае трудно однозначно определить из формы спектров ЭПР ПН в обычно используемом 3 см диапазоне СЗЧ вследствие наложения линий от разных ориентации меток в магнитном поле. Та же причина по существу затрудняет решение и другой важной задачи ЭПР спектроскопии с переносом насыщения - разделения эффектов движения и магнитной релаксации.

Поскольку *g*-фактор нитроксильных радикалов анизотропен, спектральное разрешение для различных ориентации радикалов в магнитном поле можно улучшить путем увеличения частоты регистрации. При этом также должна возрасти и скорость переноса СВЧ насыщения по спектру, поскольку при броуновском вращении она пропорциональна квадрату крутизны зависимости резонансного поля от угла поворота /1/. Расчеты спектров ЭПР ПК, проведенные на основе уравнения Лиувилля с учетом анизотропной броуновской диффузии /3/, показали, что переход в 8 мм диапазон СВЧ действительно несколько повышает чувствительность спектров к анизотропии молекулярных вращений. При экспериментальном исследовании /5/ мультислоев фосфолипидов в этом диапазоне удалось развить эмпирический подход, позволяющий в некоторых системах выявить анизотропию молекулярных движений.

Однако, в 8 мм диапазоне анизотропия резонансного поля за счет *g*-тензора сравнима с анизотропией СТВ, поэтому наложение линий от различных канонических ориентации в значительной степени сохраняется.

Ранее было показано /6,7/, что существенное повышение разрешающей способности обычных линейных по СБЧ полю спектров ЭНР и, в частности, полное разделение канонических компонент нитрокскльных радикалов достигается при переходе в 2 мм диапазон. Благодаря этому удается независимо исследовать релаксационные изменения для каждой канонической ориентации (X, Y, Z) радикала в магнитном поле, что значительно повышает информативность "линейных" спектров при изучении анизотропных молекулярных вращений /8/.

Цель настоящей работы - изучить возможности ЭПР спектроскопии с переносом СВЧ насыщения в 2 мм диапазоне при исследовании анизотропных молекулярных движений и спин-решеточной релаксации.

#### Методика эксперимента

Исследовали растворы радикалов **I** и **II** в третбутилбензоле (ТББ) в концентрации  $10^{-2}$  М. В работе /6/ показано, что вращение этих радикалов существенно анизотропно, причем оси преимущественного вращения совпадают с осями геометрической анизотропии и главными осями *g*-тензора и тензора СТВ: для **I** - по оси X, а для **II** - по оси Y. Выбор растворителя обусловлен хорошей растворимостью обоих радикалов и способностью образовывать стекла при понижении температуры.



В ЭПР спектроскопии с переносом насыщения 3 см диапазона информацию о молекулярных вращениях обычно получают из анализа формы линии квадратурных компонент первой гармоники  $V_1^{\dagger}$  или второй гармоники  $V_2^{\dagger}$  поглощения /1/, а также из факторов СЕЧ насыщения обычных спектров первой гармоники поглощения /9/. Били предложены также другие модификации метода, в которых регистрируется изменение модуля от синфазной и квадратурной компонент  $V_2$  и  $V_2^{\dagger}$  /10/, а также фазового сдвига между этими сигналами /II/.

В настоящей работе регистрировали первую и вторую гармоники синфазной и квадратурной компонент поглощения и дисперсии. Измерения проводили на спектрометре ЗПР 2 мм диапазона /12/ с объемным резонатором типа  $H_{011}$ . Частота модуляции магнитного поля  $f_m$  оставляла 90 кГп. Для настройки прибора во всех режимах регистрации использовали эталонный образен, в качестве которого применялся монокристалл дибензотетратио-фульвалена гексабромида платины. (Авторы выражают благодарность Р.Н.Любовской (ИХФ АН СССР) за любезно предоставленные монокристаллы DBTTF-PtBr<sub>6</sub> и флюарентена.)

В диапазоне 2 мм сигнал ЭПР от этого образца не насыщался СЗЧ мощностью во всем температурном интервале 90-300° К и представлял собой синглет шириной  $\approx 0.48$  мТ. Эталон либо приклеивали на поршень резонатора, либо помещали в кварцевый капилляр диаметром 0.6 мм, заполненный исследуемым раствором. Для приклеенного кристалла сигнал ЭПР обычно регистрировался между Y и Z компонентами спектра нитроксильного радикала, что усложняло анализ формы линий. В ампуле с исследуемым раствором кристаллик ориентировался в магнитном поле спектрометра, что приводило к. сдвигу резонанса в низкие поля на 27,5 мТ (g = 2.0162) и позволяло наблюдать сигнал эталона и радикала независимо. Несмотря на некоторые технические неудобства, основные измерения проводили при настройке по эталону, погруженному в раствор радикала.

Тонкую регулировку фазы СЕЧ осуществляли по форме сигнала эталона путем изменения напряжения на отражателе клистрона: при регистрации сигнала поглощения добивались симметрии второй производной на экране осциллографа при медленной развертке магнитного поля; при регистрации сигнале дисперсии - первой производной.

Для настройки фазы ВЧ модуляции использовали описанный ранее /13/ способ настройки по минимуму сдвинутого на 90° сигнала эталона. Экспериментально было проверено, что настройки ВЧ и СВЧ независимы. Следует отметить, что настройки ВЧ и СВЧ фаз сигналов по этолону, помещенному в ампулу с образцом и по эталону, приклеенному к поршню, не совладали, но различия не превышали 3°. В целом описанная методика позволяет с достаточно высокой точностью и воспроизводимостью в различных режимах регистрировать форму линии ЭПР. Об этом свидетельствует, например, тот факт, что квадратурная составляющая сигнала эталона не превышала 0.5% от величины

синфазной составляющей.

Оценку величины H<sub>1</sub> в резонаторе проводили двумя способами. По уширению при CBЧ насыщению индивидуальной линии монокристалла катион радикальной соли флюарентена (фшоарентен)<sub>2</sub>PF<sub>6</sub> /14/ с шириной  $H_0 = 0,05$  мT в предположении  $H_0 = (2/\sqrt{3})/\gamma T_2$ ,  $T_1 = T_2$  ( $\gamma$  -гиромагнитное отношение,  $T_1$ ,  $T_2$  - времена спин-решеточной и спин-спиновой релаксации). Найдено, что максимальное значение  $H_1 \approx 0.025$  мT. Вторая опенка по формуле  $H_1 = 0.1 \sqrt{QP_0}$  (Q  $\approx 2000$  - добротность нагруженного резонатора,  $P_0 = 4 \times 10^{-4}$  Вт - мощность CBЧ на входе резонатора) дает величину  $H_1 \approx 0,01$  мT. В 3 см диапазоне CBЧ спектры ЭПР ПН наблюдались при близких значениях  $H_1/1,2/$ 

Расчеты спектров ЭПР ПН проводили в модели скачкообразного вращения, приближении малой амплитуды модуляции и без учета неоднородного уширения как. описано в /4/. Использовались стандартные значения тензоров g-фактора и СТВ /15/ ( $g_x$  =2.0089;  $g_y$  =2.,0061;  $g_z$  =2,0027;  $A_x = A_y$  =0.6 мТ,  $A_z$  =3.2 мТ). Ширины однородных линий и времена спин решеточной релаксации, не зависящие от ориентации, варьировали в интервалах, характерных для спектров ЗПР нитроксильных радикалов в 2 мм и 3 см диапазонах:  $\Delta H_0 = 0.5 - 0.6$  мТ,  $T_1 = 1 - 16$  мкс /16/. Одновременно рассчитывали сигналы поглощения и дисперсии на первой и второй гармониках модуляции в 0° и 90° фазах относительно модулирующего поля.

#### Результаты и обсуждение

Как. показывает расчет, форма обычно регистрируемой в эксперименте синфазной компоненты первой гармоники поглощения  $V_1$ , как п в 3 см диапазоне, в отсутствие CBЧ насыщения практически не зависит от времен корреляции вращения  $\tau$  в диапазоне  $10^{-7} \le \tau \le 10^{-3}$  сек. В условиях CBЧ насыщения ( $H_1 = 0.025$  мТ) относительная интенсивность канонических компонент оказывается чувствительной к анизотропии вращения. Так, при вращении вокруг оси X с уменьшением  $\tau$  возрастают амплитуды Y и Z компонент, но практически не меняется амплитуда X компоненты. Аналогично, при вращении вокруг оси Y возрастают амплитуды X и Z компонент. Эти эффекты, как и 3 см диапазоне /9/ объясняются тем, что вращение индуцирует спектральную диффузию CBЧ возбуждения и, соответственно, частичное снятие CBЧ насыщения, причем только для тех радикалов, у которых при вращении изменяется ориентация главных осей относительно магнитного поля. Однако, изменения факторов CBЧ насыщения за счет анизотропии вращения при достижимых в 2 мм диапазоне значениях  $H_1$  ( $H_1 \le 0.025$  мТ) сравнительно невелики - они составляют 20% при  $\tau = 10^{-7}$  с.

В соответствии с общими свойствами симметрии уравнений Блоха.(см.напр. /17/) синфазные компоненты первой гармоники дисперсии  $(U_1)$  и второй гармоники поглощения  $(V_2)$  и соответственно квадратурные компоненты  $U_1^{\dagger}$  и  $V_2^{\dagger}$  близки по форме и аналогичным образом зависят от частоты вращения.

Форма синфазной компоненты ( $V_2$ ) заметно зависит от движения уже при временах т =  $10^{-4}$  с, однако, характер этого изменения качественно одинаков для вращения вокруг осей X, Y или Z, а также при изменении  $T_1$  (см. рис.1).

Форма квадратурных компонент поглощения и дисперсии  $(U_1^{\dagger} \, u \, V_2^{\dagger})$  заметно меняется лить при временах  $\tau \leq 10^{-5}$  с, но весьма важно, что характер этих изменений существенно зависит от ориентации оси вращения относительно главных осей тензоров **A** и **g**. Из рис.2 и 3 видно, что при одноосном вращении вокруг каждой из главных осей сохраняется или мало меняется амплитуда тех областей спектра, которые соответствуют ориентации этой оси параллельно магнитному полю, в то время как амплитуда спектра в других канонических ориентациях или в областях между ними существенно падает с уменьшением  $\tau$ .

Аналогичные закономерности наблюдаются для сигналов дисперсии U<sub>1</sub><sup>1</sup>.





Рис. І. Спектры синфазной составляющей второй гармоники сигнала поглощения  $V_2$ , рассчитанные при  $T_1$ =6,6 мкс и различных временах корреляции  $\tau_c$  вращения вокруг оси X (*a*), и  $\tau_c = 10^{-3}$  с и различных временах  $T_1$  (*б*). Расчет проводился при  $\Delta H_0 = 1/\gamma T_2 = 0.6$  мT,  $g_x = 2,0089$ ,  $g_y = 2,0061$ ,  $g_z = 2,0027$ ,  $A_x = A_y = 0.6$  мT,  $A_z = 3.2$  мT,  $f_M = 90$  кГц.

2. Рис. Спектры квадратурной составляющей второй гармоники сигнала поглощения  $V_2^{|}$  Спектры 1 и 2 расчитаны при  $\tau = 10^{-3}$  c, c 3 по 5 - при  $\tau = 10^{-7}$  c. Спектр 2 рассчитан при  $T_1 = 1$  мкс, остальные - при  $T_1 = 6.6$  мкс. Спектр 3 изотропное вращение радикалов, 4 анизотропное вокруг оси Х, 5 - вокруг оси Y. Значения остальных параметров приведены в подписи к рис. 1.

Наибольшие изменения формы спектров в обоих случаях происходят при значениях  $\tau \leq T_1$ , т.е. в области  $10^{-5} - 10^{-7}$  с. Форма сигналов дисперсии, однако, несколько менее чувствительна к движению, поэтому количественный анализ проводился в основном для спектров поглощения на второй гармонике модуляции  $V_2$  и  $V_2^{\downarrow}$ . Таким образом, идентификация типа анизотропного вращения в спектрах ЭПР 2 мм диапазона существенно облегчается по сравнению с 3 см и 8 мм диапазонами.

Изменения формы спектров  $U_1^{\dagger}$  и  $V_2^{\dagger}$  при анизотропном вращении имеют иную физическую природу, нежели для сигналов первой гармоники поглощения. Действительно, если бы они обусловлены были снятием СВЧ насыщения, то наблюдалось бы увеличение, а не уменьшение интенсивности компонент, "участвующих в движении". Это уменьшение интенсивности нельзя объяснить также уширением или смещением линий за счет "вращательного уширения" поскольку, как было показано ранее, в данном интервале времен корреляции эти эффекты практически отсутствуют.

Качественное объяснение аналогичных эффектов, приведенное для спектров ЭПР 3см диапазона, например в /I/, предполагает, что в некоторых участках спектра, регистрируемого в условиях адиабатически быстрого прохождения, увеличение частоты молекулярных переориентации приводит к нарушению условия адиабатичности  $dH/dt \ll \gamma H_1^2$ .

В наших экспериментальных условиях  $dH/dt \approx \gamma H_1^2$ , причем скорость изменения магнитного поля  $dH/dt = 2\pi f_m H_m$  может легко изменяться вариацией амплитуды модуляции  $H_m$ . Наблюдаемые при этом изменения формы линии /18/ отличаются от тех, к которым приводит изменение температуры. На этом основании нам представляется более приемлемой качественная интерпретация наблюдаемых спектральных изменений /19/, основанная на том, что сигналы  $U_1^{\dagger}$  и  $V_2^{\dagger}$  регистрируют эффекты запаздывания в спиновой системе в ответ на модулирующее поле. Интенсивность спектра в точке, соответствующей определенной ориентации радикала в магнитном поле, пропорциональна величине запаздывания, которое определяется соотношением между частотой модуляции и суммар-





Рис. 3. Спектры квадратурной составляющей первой гармоники сигнала дисперсии  $U_1^{\downarrow}$ . Значения параметров, при которых проводился расчет, приведены в подписи к рис. 2.

Рис. 4. Зависимости параметра  $I_x/I_y$  спектров квадратурной составляющей второй гармоники сигнала поглощения  $V_2^{\downarrow}$  от времени корреляции вращения вокруг оси X при разных временах  $T_1$ . Обозначения  $I_x$  и  $I_y$  приведены на рис. 2.





Рис. 5. Зависимости параметра  $I_x/I_y$  квадратурной составляющей первой гармоники сигнала дисперсии  $U_1^{\dagger}$  от времени корреляции вращения вокруг оси Х  $\tau_c^x$  при разных временах  $T_1$  (см. подпись к рис. 4). Обозначения  $I_x$  и  $I_y$  приведены на рис.3.

Рис. 6. Зависимости параметра  $K_x = I_x \{V_2^{\perp}\}/I_x(V_2)$  от  $T_1$  при разных временах корреляции вращения вокруг оси X  $\tau_c^x$ . Обозначения  $I_x(V_2)$  и  $I_x(V_2^{\perp})$  приведены на рис. 1 и 2.

ной скоростью релаксационных процессов -- спин-решеточной, спин-спиновой релаксации и спектральной диффузии, вызванной в данном случае вращением радикала.

Последний процесс дает вклад для тех ориентации и, соответственно, резонансных полей, которые изменяются при вращении; например, при вращении вокруг оси X - для компонент Y и Z, но не для X-компоненты, соответствующей в основном "радикалам с ориентацией оси X по магнитному полю. Это приводит к наблюдаемому уменьшению (с ростом  $\tau^{-1}$ ) амплитуд Y и Z компонент по сравнению с X компонентой. Аналогичным образом, при вращении вокруг оси Y уменьшаются интенсивности X и Z компонент по сравнению с Y компонентой (см. рис.2,3).

Очевидно, что влияние спектральной диффузии для данной модели некоррелированных скачков должно наблюдаться при временах  $\tau \leq T_1$  так как в этом случае скорость спектральной диффузии, как и скорость вращения, определяется величиной  $\tau^{-1}$ ; в случае броуновского вращения время спектральной диффузии на расстояние порядка ширины индивидуальной линии связано с временем корреляции вращения соотношением  $\tau_d \sim (\Delta H/\Delta A)^2 \tau$ , где  $\Delta A$  - величина анизотропии резонансного поля, т.е. величина  $\tau_d$  может быть намного меньше  $\tau$ .

Существенно, что влияние вращения на форму спектров ЭПР ПН не эквивалентно уменьшению  $T_1$  (см. рис.2 и 3). Действительно, спектральная диффузия, обусловленная переориентацией пропорциональна кругизне изменения резонансного поля  $dH(\theta)/d\theta$ , т.е. даже в случае изотропного вращения она неодинакова в различных областях спектра, в то время как спин решеточная релаксация (если она.не зависит от ориентации), одинакова во всех областях спектра. Указанные различия проявляются значительно более четко в 2 мм диапазоне по сравнению с 3 см диапазоном (см.рис.2 и 3).

Для количественной оценки времен корреляции спин-решеточной релаксации для каждого вида одноосного вращения (X, Y, Z) нужно выбрать спектральные параметры, преимущественно чувствительные к изменению либо  $\tau$  либо  $T_1$ . Из изложенных выше соображений следует, что в качестве параметров первого типа удобно взять отношение амплитуд канонической компоненты, "участвующей в движении" (например, в случае "X" вращения - компоненты Y или Z) и компоненты, не участвующей в движении (в данном случае X компоненты).

Из рис.4 видно, что при вращении вокруг оси X отношение  $I_x/I_y$  изменяется более, чем в 5 раз в интервале  $10^{-7} \le \tau \le 10^{-3}$  с. В то же время при изменении  $T_1$  в интервале 1 - 10 мкс, типичном для нитроксильных радикалов в 3 см диапазоне /15,16/, максимальная вариация этого параметра составляет 10%.

Такой же параметр движения можно ввести и для сигнала дисперсии  $U_1^{\dagger}$  (см. рис. 3), однако, диапазон его изменения в зависимости от  $\tau$  несколько меньше, чем для сигнала  $V_2^{\dagger}$  (см. рис. 5).

Для оценки изменения  $T_1$  естественно выбрать отношение амплитуд "не участвующих в движении" компонент квадратурного и синфазного сигналов. В случае "Х" вращения это Х-компоненты сигналов  $V_2^{|}$  и  $V_2$ :  $K_x = I_x/(V_2^{|})/I_x(V_2)$ . Из расчетов следует, что этот параметр увеличивается в 10 раз при изменении  $T_1$  от 1 до 16 мкс, а при изменении  $\tau$  в интервале  $10^{-7} \le \tau \le 10^{-3}$  с - максимально всего на 10% - 12% (рис. 6).

Аналогичное рассмотрение для вращения вокруг оси Y показало, что в качестве "параметра движения" удобно выбрать отношение амплитуды Y-компоненты к амплитудам линий, соответствующим промежуточным ориентациям между X и Y или между Y к Z (например,  $I_A$  на рис. 2). В интервале  $10^{-7} \le \tau \le 10^{-4}$  с отношение  $I_y/I_A$ уменьшается в 3 - 4 раза, однако, в отличие от "X" вращения этот параметр заметно зависит от  $T_1$ , особенно при коротких  $\tau$  (см. рис. 7). Определение времен  $T_1$  при наличии Y-вращения также осложняется по сравнению с вращением вокруг оси X. Отношение интенсивностей "не участвующих в движении" Y компонент  $K_y = I_y(V_2^{\dagger})/I_y(V_2)$ , как видно из рис. 8, может весьма сильно зависеть от  $T_1$ . Однако, оно также достаточно чувствительно к временам  $\tau$ , что позволяет, используя семейства расчетных кривых  $I_y/I_A = f_{T1}(\tau)$  и  $K_y = F_{\tau}(T_1)$ , в принципе, оценить времена  $\tau$  и  $T_1$  из экспериментальных спектров.





Рис. 7. Зависимости параметра  $I_y/I_A$  сигналов  $V_2^{\dagger}$  - (1-3) и  $U_1^{\dagger}$  - (1<sup> $\dagger$ </sup> - 3<sup> $\dagger$ </sup>) от времени корреляции вращения вокруг оси Y  $\tau_c^y$  при значениях  $T_1$ : 1 мкс - 1,1', 3 мкс - 2,2', 10 мкс - 3,3<sup> $\dagger$ </sup>. Остальные параметры те же, что и на других рисунках. Обозначения  $I_y$  и  $I_A$  приведены на рис.2 и 3.



Рис. 8. Зависимости параметра  $K_y = I_y \{V_2^{\perp}\}/I_y(V_2)$  от  $T_1$  при различных временах корреляпии вращения вокруг оси Y  $\tau_c^y$ . Обозначения  $I_y \{V_2^{\perp}\}$  и  $I_y(V_2)$  приведены на Рис. 1 и 2.



Рис. 9. Зависимость от температуры формы линии синфазной составляющей второй гармоники сигнала поглощения  $V_2$  раствора радикала **I** в ТББ.  $H_{\rm M} = 0.12$  мТ. Температура регистрации указана на спектрах.

Рис. 10. Зависимость от температуры формы линии квадратурной составляющей первой гармоники сигнала дисперсии  $U_1^{\dagger}$  растворов радикалов **I** - (а) и **II** -(б) в ТББ.  $H_{\rm M} = 0.12$  мТ. Температура регистрации указана на спектрах.

Спектры ЭПР радикалов **I** и **II** в третбутилбензоле регистрировали в интервале температур 130 – 170 К. Этот интервал был выбран на основании экстраполяции времен корреляции, измеренных при более высоких температурах, а также потому, что выше 170 К интенсивность квадратурных компонент дисперсии и поглощения резко уменьшается. В



Рис. 11. Зависимость от температуры формы линии квадратурной составляющей второй гармоники сигнала поглощения  $V_2^{||}$  растворов радикалов **I** - (*a*) и **II** - (*б*) в ТББ.  $H_{\rm M} = 0.12$  мТ. Температура регистрации указана на спектрах.

спектрах ЭПР синфазных сигналов  $V_1$  при этом наблюдается уширение канонических компонент. Из зависимости ширин этих компонент от температуры путем экстраполяции в область T < 170 К получили, оценку  $\tau \ge 5 \times 10^{-7}$  с при T = 160К.

В интервале 130 – 170 К форма, сигналов  $V_1$  в отсутствие насыщения (P =0.1 практически не меняется,  $P_0$ ) улучшается лишь разрешение сверхтонких и канонических компонент счет усреднения неоднородного за уширения (см рис. 9).

Изучение температурных зависимостей синфазных сигналов первой гармоники дисперсии  $(U_1)$  и второй гармоники поглощения  $(V_2)$  показывает, что общий характер изменений формы этих спектров с ростом температуры смещение в область положительных значений - качественно согласуется с

изменениями формы расчетных спектров как при уменьшении  $\tau$ , так и  $T_1$  (см. рис. 1). В экспериментальных спектрах в отличие от расчетных возрастает разрешение канонических и СТВ компонент с ростом температуры, что также, как и для сигналов  $V_1$ , по-видимому связано с уменьшением неоднородного уширения. Аналогичный характер изменения расчетных спектров  $V_2$  (или  $U_1$ ) с уменьшением  $T_1$  и  $\tau$  для различных предельных случаев одноосного вращения не позволяет использовать эти сигналы для определения времен  $\tau$  и  $T_1$ .

Примеры температурных зависимостей формы квадратурных сигналов  $U_1^{\dagger}$  и  $V_2^{\dagger}$  для радикалов **I** и **II** приведены на рис. 10 и 11. Характерной их особенностью является почти полное отсутствие изменений формы спектров в интервале 130 – 160 К и весьма резкое уменьшение амплитуды и изменение формы в интервале 160 – 170 К. По-видимому этот температурный интервал соответствует структурному переходу в растворителе.

Из рис. 10 видно, что для радикала I относительная интенсивность "Х" компоненты сигнала  $V_2^{\perp}$  с ростом температуры увеличивается: отношение  $I_x/I_y$  возрастает от 0.4 при 130 К до 0.75 при 170 К. Как было показано выше, параметр  $I_x/I_y$  чувствителен к  $\tau$  и практически не чувствителен к  $T_1$ , поэтому увеличение  $I_x/I_y$  свидетельствует о расторма;шванип вращательной подвижности преимущественно относительно оси Х. Опенка изменения величины  $\tau$  по этому параметру из рис. 4 показывает, что в интервале температур 130 – 160 К  $\tau \ge 10^{-5}$  с, т.е. на границе чувствительности метода, а при 170 К -  $(2.8 - 4.5) \times 10^{-6}$  с с учетом неопределенности в значениях  $T_1$ .

Форма сигнала дисперсии для радикала I изменяется аналогично, хотя и в меньшей степени, чем  $V_2$ : отношение  $I_x/I_y$  увеличивается от 0.51-0.52 при 130 K до 0.585 при 170 K. Соответствующие значения  $\tau$ , исходя из расчетных зависимостей на рис.5, равны  $\tau \ge 10^{-5}$  с при 130 – 150 K и  $\tau \approx 5.5 \times 10^{-6}$  с при 170 K, т.е. удовлетворительно согласуются со значениями, полученными из спектров второй гармоники поглощения.

Параметр  $K_x = I_x(V_2^{\perp})/I_x(V_2)$ , чувствительный к  $T_1$ , но сравнительно нечувствительный к  $\tau$ , для радикала **I** меняется от 1 при 130 К до 0.08 при 170 К (см. табл. 1), что свидетельствует о резком уменьшении  $T_1$  в интервале 160 – 170 К. В расчетных спектрах этот параметр варьирует от 0.06 до 0.55 для 1 мкс  $< T_1 < 16$  мкс, достигая максимума при  $T_1 = 7$ 

Таблица 1. Спектральные параметры, времена корреляции и времена спин-решеточной релаксации радикала **I** в ТББ.

Таблица 2. Спектральные параметры, времена корреляции и времена спин-решеточной релаксации радикала **II** в ТББ.

| Т          | $I_{\rm x}/I_{\rm y}$ | т (сек)               | K <sub>x</sub> | $T_{1}/T_{10}$ | T          | $I_{\rm x}/I_{\rm y}$ | т (сек)               | K <sub>x</sub> | $T_1$  |
|------------|-----------------------|-----------------------|----------------|----------------|------------|-----------------------|-----------------------|----------------|--------|
| <b>(K)</b> |                       |                       |                |                | <b>(K)</b> |                       |                       |                | (мкс)  |
| 130        | $0.43 \pm$            | 10-5                  | 1              | 1              | 130        | 1.88 ±                | 10-5                  | 1.0 ±          | 7 - 11 |
|            | 0.02                  |                       |                |                |            | 0.05                  |                       | 0.1            |        |
| 140        | $0.45 \pm$            | 10-5                  | 0.8            | 1              | 140        | 1.86 ±                | 10-5                  | 1.1 ±          | 7 - 11 |
|            | 0.02                  |                       |                |                |            | 0.05                  |                       | 0.1            |        |
| 150        | $0.44 \pm$            | 10-5                  | 0.87           | 1              | 150        | $2.0 \pm$             | 6x10 <sup>-6</sup>    | 1.0 ±          | 7 – 9  |
|            | 0.02                  |                       |                |                |            | 0.1                   |                       | 0.1            |        |
| 160        | $0.45 \pm$            | 10-5                  | 0.85           | 1              | 160        | $2.3 \pm$             | (2.5-                 | 1.1 ±          | 7 - 11 |
|            | 0.02                  |                       |                |                |            | 0.1                   | $3.5) \times 10^{-6}$ | 0.1            |        |
| 170        | $0.75 \pm$            | (2.8-                 | 0.08           | 0.1 –          | 170        | 13 ±                  | 10-7                  | 0.13 ±         | 6 – 7  |
|            | 0.02                  | 4.5)x10 <sup>-6</sup> |                | 0.16           |            | 0.2                   |                       | 0.01           |        |

– 10 мкс (см. рис. 6). Различие в предельных значениях  $K_x$  для больших  $T_1$  в эксперименте и расчете обусловлено по-видимому, приближенным характером расчетной модели. Поэтому, исходя из относительных изменений параметра  $K_x$ , можно дать лишь приближенную опенку уменьшения  $T_1$  в 6 - 10 раз в области 160 – 170 К.

Для радикала II температурите изменения синфазных сигналов дисперсии и поглощения аналогичны соответствующим изменениям для радикала I. Однако, изменения формы квадратурных сигналов существенно отличаются от таковых для радикала I и характерны для преимущественного вращения вокруг оси Ү. Так, в интервале 130 – 170 К амплитуда X и Z компонент, а также амплитуды линий в областях между X и У и У и Z значительно уменьшается по сравнению с интенсивность У компоненты. Как было показано, в качестве параметра, чувствительного к вращению вокруг оси У можно использовать отношение Iy/IA (см. рис.2). Сравнение этих параметров (см. табл. 2) с расчетными кривыми на рис. 7 позволяет определить интервал значении τ учетом неопределенности в  $T_1$  (см. табл. II). Для оценки изменений  $T_1$  используем параметр  $K_v =$  $I_{v}(V_{2}^{\dagger})/I_{v}(V_{2})$ . Как видно из табл. II, в интервале 130 – 170 К он уменьшается в 8 раз, причем все изменения происходят в области температур 160 – 170 К. Используя интервалы значений т для каждой температуры, можно с помощью кривых на рис. 8 определить величины  $T_1$ , а используя их уточнить ранее найденные значения  $\tau$  и т.д. Такая процедура дает величины  $\tau$  и  $T_1$  приведенные в табл. II. Из этих данных видно, что для радикала II основной вклад в изменение обоих параметров  $I_{y}/I_{A}$  и  $K_{y}$  при повышении температуры даетт. Уменьшение времени  $T_1$ , если и имеет место, составляет не более 1.5 - 2 раза.

Таким образом, по спектрам ЭПР ПН обнаруживаются резкие изменения подвижности спиновых меток в узком интервале температур 160 – 170 К, обусловленные по-видимому структурным переходом в матрице.

Здесь следует отметить некоторое увеличение относительной интенсивности Z-компонент (относительно интенсивности X-компоненты), наблюдаемое с ростом температуры от 130 до 160 К (рис. 10, 11). Для сигналов  $U_1^{\dagger}$  радикала **II** (рис. 10b) этот эффект максимален и достигает несколько десятков процентов. Эти изменения в спектре указывают, возможно, на зависимость скорости спин-решеточной релаксации от ориентации радикала в магнитном поле, которая не учитывается в рамках рассмотренной приближенной модели. Тем не менее, различия в динамике обоих радикалов эта модель на качественном уровне, по-видимому, описывает правильно. Если для радикала **I** наиболее сильные изменения связаны с уменьшением времени спин-решеточной релаксации, то для радикала **II** - с размораживанием вращения вокруг длинной оси молекулы.

Спин-решеточная релаксация, как известно, определяется в основном высокочастотными движениями радикала /19/, ограниченными по амплитуде, в то время как измеряемая по спектрам ЭПР ПН вращательная подвижность соответствует гораздо более медленным движениям { $\tau \approx 10^{-5} - 10^{-7}$  с), но достаточно большой угловой амплитуды. Различия в динамике радикалов **I** и **II**, по-видимому, отражают специфику их взаимодействия с молекулами растворителя.

Порченные в работе результаты показывают, что ЭПР спектроскопия с переносом СВЧ насыщения в 2 мм диапазоне существенно расширяет возможности метода ЭПР в исследовании анизотропных "сверхмедленных" молекулярных вращении. Возможность разделения эффектов медленного вращения и спин-решеточной релаксации позволяет также получить информацию о высокочастотных движения примесных молекул-зондов.

### Литература.

- 1. Hyde J.S., Dalton L.R., Saturation-Transfer-Spectroscopy, in Spin Labelling II. Theory and Applications, ed. By L. Berliner, N.Y., 1979, 1 70.
- 2. Hemminga M.A., Chemistry and Physics of Lipids, 1983, 32, 323-383.
- 3. Robinson B.H., Dalton L.R., J. Chem. Phys., 1980, 72,1312-1324.
- 4. Лившиц В.А., Бобров Ю.А., Теор. и экспер. химия, 1986, 22, № 2, 331-336.
- 5. Johnson M.E., Lie L., Biochemistry, 1982, 21, 4459.
- 6. Гринберг О.Я., Дубинский А.А., Шувалов В.Ф., Оранский Л.Г., Курочкин В.И., Лебедев Я.С, Доклады АН СССР, 1976, **230**, №.4, 884-867.
- 7. Гринберг О.Я., Дубинский А.А., Лебедев Я.С, Успехи химии, 1983, 52, № 9, 1490-1513.
- 8. Дубинский А.А., Гринберг О.Я., Курочкин В.И., Оранский Л.Г., Полуэктов О.Г., Лебедев Я.С, Теор. и экспер. химия, 1981, **17**, № 2, 231-236.
- 9. Лившиц В.А., Теор. и экспер. химия, 1977, **13**, 363.
- 10. Hemminga M.A., de Jager P.A., J. Magn. Reson., 1981, 43, 324.
- 11. Vistnes A.J., Biophys. J., 1983, 43, 31.
- 12. Галкин А.А., Гринберг О.Я., Дубинский А.А., Кабдин Н.Н., Крымов В.Н., Курочкин В.И., Лебедев Я.С, Оранский Л.Г., Шувалов В.Ф., Приб. и техн. эксперим., 1977, № 4, 284.
- 13. Hemminga M.A., de Jager P.A., J. Magn. Reson., 1978, 31, 324. 491-496.
- 14. Krőhnke C., Enkelmann V., Wegner G., Angew. Chem. Int. Ed., Engl., 1980, **19**, № 11, 912-919.
- 15. Метод спиновых меток. Теория и применение. /Под ред. Л. Берлинер. М.: Мир, 1979, 640 с.
- 16. Pereival P.W., Hyde J.S., J. Magn. Reson., 1976, 23, 249.
- 17. Лёше А., Ядерная индукция, М.: Мир, 1963, 684 с.
- 18. Лившиц В.А., Теор. и экспер. химия, 1977, 13, 780.
- 19. Сликтер И., Основы теории магнитного резонанса, М.: Мир, 1967.