Supporting Information

Impact of Spin Exchange Interaction on Charge Transfer in Dual-Polymer Photovoltaic Composites

Victor I. Krinichnyi^{*†}, Evgeniya I. Yudanova[†], Nikolay N. Denisov[†], Aleksey A. Konkin^{‡,§}, Uwe Ritter[‡], Bernhard Wessling^{*}, Alexander L. Konkin[‡], Victor R. Bogatyrenko[†]

[†]Department of Kinetics and Catalysis, Institute of Problems of Chemical Physics RAS, Academician Semenov Avenue 1, Chernogolovka 142432, Russia [‡]Center for Micro- and Nanotechnologies, Ilmenau University of Technology, Gustav-Kirchhoff- Str.7, D-98693 Ilmenau, Germany [§]Institute of Physics, Kazan Federal University, Kreml.18, Kazan, Russia *BWIT e.K., Am Wischhof 38a, D-22941 Jersbek, Germany

SI-I. NIR-Vis-UV Spectra of Polymer Composites.

Figure S1. NIR-Vis-UV spectra of the F8T2:PC₆₁BM (1), PFO-DBT:PC₆₁BM (2), PCDTBT:PC₆₁BM (3) subsystems (dashed lines) as well as the PANI:TSA/F8T2:PC₆₁BM (1), PANI:TSA/PFO-DBT:PC₆₁BM (2),PANI:TSA/PCDTBT:PC₆₁BM (3) dual-polymer composites (solid lines), registered at T = 298 K.

^{*} Author to whom any correspondence should be addressed. E-mail: kivirus@gmail.com, Tel.: +7(496-52)21882

SI-II. DFT Evaluation of Morphology and Radical Spin Density Overdestribution in PCDTBT/PANI π - π Stacking Model Complex.

SI-IIa. Structures. FF and DFT setting.

Figure S2. The denomination of the atom number of the π - π stacking 4ANI/2CDTBT complex after MM2 steric energy optimization. The atoms C- dark yellow, H- green, N- blue, O- red, S-violet in the structures are denominated in DFT hfc calculation after B3LYP/6-311G energy/structure optimization.

Figure S3. Model of the π - π stacking complex 8ANI:2TSA/2CDTBT after MM2 optimization, $d_1 \approx d_2 \approx 3.4 \pm 0.1$ Å.

SI-IIb. Cartesian coordinates data

H(74) H(75) H(76)

H(77) H(78) H(79)

H(80) H(81) H(82)

8.816

11.137 13.469

15.148 17.087

17.047

19.457 21.515 26.726

1.510

5.356 4.642

3.606 2.551

-1.935

-2.351 -2.193 -2.862

1.486

3.086 2.736

2.730 2.264 1.849

0.184

0.153 0.367 0.346

Table S1. The Complex Model of 4ANI:2TSA / 2CDTBT:

			5	H(83)	23 452	2 058	1 846	H(181)	30 010	2 221	-2 758
Tahl	r 13م	be Cor	nnlav Model	H(84)	21.091	1.864	1.671	H(182)	28.378	1.977	-0.951
1 an			inplex mouel	H(85)	25.927	1.728	1.848	H(183)	26.360	0.690	-1.302
		~		H(86)	28.161	0.946	1.642	H(184)	25.976	-1.928	-1.833
of 4A	ANI:2T	SA / 20	CDTBT:	H(87)	28.663	-3.537	0.088	H(185)	24.971	-2.718	-3.060
				H(88)	31.117	-3.731	0.086	H(186)	27.997	-2.144	-3.230
PC ₍₁	BM (O	nly FF	Fnorgy /	H(89)	33.108	-3.385	0.283	H(187)	27.018	-2.769	-4.611
1 C01		my rr	Energy /	H(90) H(91)	35.329	-3.102	0.514	H(188) H(189)	27.103	-4.123	-1.822
~				H(92)	39 587	0.336	2.130	H(190)	31 109	-4.803	-3.300
Stru	cture ()	ptimis	tion)	H(95)	39.870	-2.089	1.204	H(191)	30.537	-6.538	-3.036
		-	<i>,</i>	H(96)	23.405	-3.254	-0.860	H(192)	31.246	-4.845	-3.072
				H(97)	24.892	-3.837	-0.070	H(193)	16.742	-2.284	3.596
Atoms	х	Y	Z	H(98)	23.368	-3.831	0.859	N(194)	16.863	-1.307	3.971
NI(4)	(240	F 474	2 220	H(99)	7.418	6.611	4.691	C(195)	18.104	-1.048	4.110
N(1)	6.348 5.122	5.4/1	3.238	H(100)	7.382	7.320	3.024	C(196) C(107)	18.685	0.072	4.5/1
C(2)	7 179	4 594	2 844	H(101)	1 853	7.429	4.060	C(197) C(198)	20.019	-0.804	4.001
C(4)	3.961	5.713	3.394	C(105)	22.155	2.586	-2.431	N(199)	22.097	-0.550	4.451
C(5)	8.518	4.554	2.798	C(106)	22.940	1.515	-2.268	H(200)	22.216	0.425	4.831
C(6)	5.156	3.887	2.585	C(107)	22.387	0.310	-2.078	C(201)	23.240	-1.091	4.291
C(7)	6.445	3.559	2.416	C(108)	21.056	0.190	-2.050	C(202)	24.293	-0.324	4.633
C(8)	4.031	3.212	2.320	C(109)	20.261	1.266	-2.173	C(203)	25.561	-0.752	4.529
C(9) C(10)	2.809	3.807	2.000	C(110)	20.816	2.4/0	-2.368	C(204) N(205)	25.856	-1.980	4.07 I 2.010
C(10)	7 040	2 465	1 934	C(112)	19 209	2 941	-3.200	H(205)	26.875	-2.525	3.515
C(12)	8.384	2.439	1.894	C(113)	18.651	1.731	-3.783	C(207)	28.240	-2.271	4.072
C(13)	9.161	3.466	2.316	C(114)	19.182	0.885	-2.880	C(208)	29.067	-3.281	3.728
C(14)	10.514	3.421	2.266	C(115)	19.320	-0.424	-3.176	C(209)	30.401	-3.176	3.831
C(15)	11.374	4.373	2.657	C(116)	18.900	-0.888	-4.365	C(210)	30.951	-2.042	4.285
C(16)	12.636	3.980	2.464	C(117)	18.346	-0.049	-5.261	C(212)	30.150	-1.025	4.631
C(17) S(10)	12.099	2.747	1.934	C(118) C(110)	18.230	1.262	-4.973	C(213)	28.816	-1.143	4.520
C(19)	13.821	2.243	1.627	C(119)	18 915	1 798	-7 136	C(214)	23 533	-2.318	3.831
C(20)	13.881	0.798	1.108	C(121)	19.019	0.488	-7.428	C(216)	20.278	-1.925	3.843
C(21)	15.032	2.594	1.846	C(122)	18.741	-0.435	-6.489	C(217)	18.943	-2.039	3.749
C(22)	16.189	1.963	1.595	C(123)	19.539	-1.511	-6.347	C(218)	15.719	-0.771	4.145
C(23)	16.265	0.710	1.099	C(124)	20.600	-1.676	-7.155	C(219)	14.670	-1.557	3.825
C(24)	15.054	0.160	0.858	C(125)	21.771	-2.105	-6.642	C(220)	13.401	-1.143	3.963
N(25) N(26)	12.807	-1.003	0.815	C(126) C(127)	21.915	-2.320	-5.320	C(221)	13.144	0.088	4.425
S(27)	13 262	-1.005	0.190	C(128)	21 283	-1 708	-3 354	C(223)	15 435	0.670	4 601
C(28)	17.465	0.106	0.899	C(129)	20.494	-0.853	-2.674	H(225)	18.108	0.944	4.897
C(29)	17.740	-1.138	0.474	C(130)	22.633	-1.584	-3.394	H(226)	20.415	1.143	5.051
C(30)	19.054	-1.376	0.458	C(131)	23.035	-1.976	-4.640	H(227)	24.140	0.700	5.019
C(31)	19.738	-0.300	0.871	C(132)	24.066	-1.453	-5.351	H(228)	26.332	-0.039	4.841
5(32) N(22)	18.762	0.758	1.159	C(133)	25.050	-0.647	-4.906	H(229)	28.672	-4.237	3.342
C(34)	24.191	-1.004	0.374	C(134) C(135)	25.549	-0.626	-3.306	H(230)	31.049	-4.019	3.335 4 364
C(35)	25.335	-1.372	0.784	C(136)	24.069	1.314	-2.967	H(233)	30.595	-0.085	4.999
C(36)	21.895	-1.219	0.704	C(137)	24.345	2.134	-4.012	H(235)	28.239	-0.261	4.826
C(37)	26.591	-1.826	0.678	C(138)	24.741	1.738	-5.257	H(236)	24.953	-3.765	3.328
C(38)	23.776	0.063	1.199	C(139)	24.932	0.458	-5.667	H(237)	22.762	-3.032	3.519
C(39)	25.103	-0.116	1.192	C(140)	24.407	0.068	-6.840	H(238)	20.855	-2.798	3.519
C(40) C(41)	23.007	0.966	1.014	C(141) C(142)	23.848	0.919	-7.709	H(239)	18.000	-2.993	3.304
C(42)	21.080	-0.181	0.997	C(142)	22.200	-0.640	-8.207	H(240)	12.566	-1.812	3.694
C(43)	26.114	0.698	1.505	C(144)	22.749	-1.478	-7.309	H(242)	12.104	0.438	4.538
C(44)	27.367	0.227	1.380	C(145)	23.858	-1.138	-6.640	H(245)	13.967	1.908	5.116
C(45)	27.646	-1.027	0.952	C(146)	20.864	-0.763	-8.110	H(246)	16.208	1.185	4.883
C(46)	28.913	-1.479	0.799	C(147)	20.083	0.327	-8.237	O(247)	18.970	-4.405	6.189
C(47) C(48)	29.300	-2.093	0.300	C(148) C(149)	20.640	1.538	-8.440	5(248) O(249)	17.310	-4.439	0.230
C(49)	31.214	-1.656	0.803	C(150)	22.601	2.676	-7.883	O(250)	16.622	-4.314	4.939
S(50)	30.128	-0.700	1.066	C(151)	23.753	2.210	-7.362	C(251)	16.600	-2.899	6.847
C(51)	32.542	-1.435	0.971	C(152)	24.177	2.596	-6.142	C(252)	15.270	-2.727	6.936
C(52)	33.123	-0.304	1.437	C(153)	23.454	3.513	-5.481	C(253)	14.756	-1.567	7.377
C(53)	33.427	-2.405	0.671	C(154)	22.318	4.014	-6.004	C(254)	15.557	-0.550	7.737
C(54)	34.754	-2.268	0.810	C(155)	21.243	4.205	-5.218	C(255)	10.880	-0.725	7.04/
C(55) C(56)	34 468	-0.170	1.200	C(150) C(157)	20.144	3.000	-5.915	C(258) C(257)	17.403	-1.000	8 209
N(57)	32.484	0.733	1.791	C(158)	20.538	3.473	-7.143	H(258)	14.577	-3.532	6.639
N(58)	34.803	0.965	2.032	C(159)	21.879	3.580	-7.199	H(259)	13.661	-1.451	7.430
S(59)	33.485	1.990	2.338	C(160)	19.919	2.446	-7.756	H(260)	17.566	0.097	7.929
C(60)	36.705	-1.066	1.385	C(161)	21.324	3.931	-3.905	H(261)	18.498	-1.982	7.154
C(67)	37.465 28 770	-0.038	1.813 1.788	C(162)	22.4/9	3.464 3.210	-3.390 _/ 17=	H(262)	15.088	0.850	9.315 7.7.1
C(63)	38 911	-0.325	1.336	C(103) C(164)	23.547 23.193	3.218 -0 596	-4.1/0	H(203) H(264)	13.520	0.880	7.741
S(64)	37.618	-2.177	1.031	C(165)	26.806	0.220	-3.322	O(265)	28.064	-4.035	6.669
C(66)	23.959	-3.262	0.106	C(166)	27.730	0.344	-4.293	S(266)	26.765	-5.045	6.442
C(67)	6.790	6.767	3.785	C(167)	28.853	1.055	-4.103	O(267)	26.463	-6.012	7.506
H(69)	3.904	6.723	3.828	C(168)	29.085	1.644	-2.921	O(268)	26.439	-5.350	5.045
H(/0)	9.053	5.440	3.166	C(169)	28.189	1.511	-1.933	C(269)	25.207	-4.178	6.727
H(72)	4.000	3 275	2 393	C(170) C(171)	27.070	-2 031	-2.130	C(270) C(271)	24.022 22 873	-4.700 -4.106	6 703
H(73)	6.447	1.607	1.580		000			0(277)			2.700

-3.499 -2.933 -3.352

-2.260 -2.497 -4.502 -5.034 -5.268 -4.915 -2.758 -0.951 -1.302

27.084 27.249 28.578

29.348 30.625

28.899

19.654 27.587 29.595

-2.727

-4.147 -4.757

-5.025 -5.568

-4.956

-4.956 -1.780 -0.150 1.143 2.221 1.977

C(172)

C(172) C(173) C(174) O(175) C(176) O(177)

C(178) H(179) H(180)

C(272)	22.874	-2.860	7.205	
C(273)	24.060	-2.279	7.457	
C(274)	25.211	-2.928	7.223	
C(275)	21.578	-2.128	7.457	
H(276)	23.974	-5.785	6.066	
H(277)	21.914	-4.604	6.480	
H(278)	24.093	-1.253	7.859	
H(279)	26.159	-2.409	7.439	
H(280)	21.172	-2.404	8.456	
H(281)	21.706	-1.023	7.424	
H(282)	20.816	-2.388	6.689	

C(29)

C(30)

C(31)

S(32) N(33) C(34) C(35) C(36) C(36) C(37)

C(38) C(39) C(40)

C(41) C(42)

C(43) C(44) C(45)

C(46) C(47)

C(48) C(49)

S(50)

C(51)

C(52) C(53) C(54)

C(62) C(63)

S(64) C(65) C(66) H(67) H(68)

H(69)

H(70) H(71) H(72)

H(73)

H(74)

H(75)

H(76)

H(77)

H(77) H(78) H(79)

H(80) H(81) H(82)

H(83) H(84) H(85) H(86) H(87) H(88) H(89) H(90) H(91)

H(92)

2.297

-0.917

-4.025

Table S2. The Cartesian Coordinates of the 4ANI/2CDTBT System Used for the DFT Single Point Energy Optimization in Gaussian (G09W) Package.

Atoms	Х	Y	Z
N(1)	-16.165	0.615	1.633
C(2)	-17.245	0.744	0.975
C(3)	-15.141	0.403	0.911
C(4)	-18.521	0.971	1.314
C(5)	-13.844	0.213	1.190
C(6)	-16.904	0.604	-0.318
C(7)	-15.581	0.389	-0.354
C(8)	-17.812	0.684	-1.299
C(9)	-19.091	0.912	-0.956
C(10)	-19.439	1.054	0.335
C(11)	-14.729	0.186	-1.362
C(12)	-13.431	-0.003	-1.066
C(13)	-12.947	0.004	0.200
C(14)	-11.634	-0.188	0.476
C(15)	-11.052	-0.200	1.685
C(16)	-9.737	-0.412	1.579
C(17)	-9.367	-0.552	0.296
S(18)	-10.582	-0.423	-0.523
C(19)	-8.112	-0.762	-0.174
C(20)	**-7.771	-0.883	-1.476
C(21)	-7.067	-0.859	0.671
C(22)	-5.802	-1.042	0.262
C(23)	-5.448	-1.145	-1.036
C(24)	-6.493	-1.063	-1.887
N(25)	-8.612	-0.823	-2.430
N(26)	-6.365	-1.141	-3.150
S(27)	-7.859	-0.988	-3.944
C(28)	-4.157	-1.302	-1.419

-3.655	-1.373	-2.662	H(93)	3.877	-1.725	-4.030
-2.324	-1.486	-2.644	H(94)	-15.395	1.530	3.401
-1 862	-1 497	-1 385	H(95)	-17 050	0.887	3 596
2 022	1.177	0.496	L(06)	15 601	0.007	2 5 2 0
-3.022	-1.410	-0.460	11(90)	-15.001	-0.237	3.520
2.809	-1.782	-2.140	H(97)	-20.495	1.240	0.595
1.709	-1.709	-1.507	H(98)	-6.066	2.214	-3.024
3.834	-1.832	-1.389	N(99)	-6.123	2.262	-1.973
0.430	-1.640	-1.899	C(100)	-4.952	2.170	-1.476
5.152	-1.914	-1.615	C(101)	-4.581	2.182	-0.185
2 029	-1 705	-0 207	C(102)	-3 293	2 079	0 180
3 364	-1 781	-0.134	C(103)	-2 203	1 964	-0 716
1.07/	1 ()5	0.134	C(103)	-2.273	1.704	-0.710
1.070	-1.020	0.724	N(104)	-1.122	1.074	-0.217
-0.204	-1.558	0.315	H(105)	-1.182	1.933	0.833
-0.569	-1.567	-0.990	C(106)	0.099	1.799	-0.573
4.200	-1.803	0.908	C(107)	0.990	1.779	0.436
5.518	-1.879	0.660	C(108)	2.315	1.704	0.228
6.035	-1.940	-0.590	C(109)	2.832	1.637	-1.010
7.367	-2.011	-0.822	N(110)	4.056	1.573	-1.362
7 985	-2 073	-2 012	H(111)	4 120	1 524	-2 412
0.212	2.070	1 960	C(112)	5 227	1.521	0.056
7.313	-2.072	-1.000	C(112)	5.227	1.007	1 755
9.000	-2.003	-0.503	0(113)	0.231	1.481	-1./00
8.408	-2.026	0.217	C(114)	7.521	1.459	-1.385
10.907	-1.910	-0.052	C(115)	7.847	1.512	-0.087
11.214	-1.799	1.259	C(116)	6.868	1.584	0.825
11.984	-1.903	-0.862	C(117)	5.581	1.607	0.442
13 244	-1 799	-0 411	C(118)	1 939	1.638	-2 019
13 564	-1.686	0.896	C(119)	0.614	1 720	-1 811
10.001	1.000	1 711	C(120)	2 662	1.044	2 007
12.407	-1.070	1.711	C(120)	-2.003	1.744	-2.007
10.338	-1.774	2.183	C(121)	-3.952	2.042	-2.372
12.575	-1.587	2.975	C(122)	-7.338	2.399	-1.612
11.046	-1.589	3.716	C(123)	-8.228	2.449	-2.626
14.851	-1.580	1.317	C(124)	-9.546	2.594	-2.412
15.306	-1.462	2.580	C(125)	-10.015	2.692	-1.161
16.640	-1.381	2.624	C(126)	-9.152	2.642	-0.138
17 101	-1 444	1 374	C(127)	-7 836	2 498	-0 365
16.016	1.577	0.405	L(120)	5 202	2.170	0.000
2 950	-1.377	2 4 1 2	H(120)	-3.302	2.274	1 24 4
2.000	-1./92	-3.013	П(129)	-3.070	2.097	1.204
-16.073	0.698	3.102	H(130)	0.651	1.833	1.487
-18.836	1.091	2.362	H(131)	2.938	1.701	1.129
-13.557	0.238	2.250	H(132)	6.024	1.432	-2.839
-17.526	0.568	-2.356	H(133)	8.317	1.391	-2.147
-19.862	0.983	-1.742	H(134)	8.904	1.487	0.226
-15.079	0.173	-2.406	H(135)	7.128	1.620	1.897
.12 777	-0 165	-1 940	H(136)	4 850	1 664	1 255
-11 522	-0.058	2 662	H(137)	2 278	1.578	-3 060
-11.555	-0.030	2.002	11(137)	2.270	1.370	-3.007
-9.098	-0.447	2.471	H(138)	-0.014	1./19	-2.710
-7.195	-0.779	1.762	H(139)	-1.939	1.847	-2.824
-5.056	-1.087	1.075	H(140)	-4.170	2.016	-3.455
-4.192	-1.326	-3.617	H(141)	-7.901	2.370	-3.678
-1.742	-1.536	-3.574	H(142)	-10.246	2.628	-3.264
0.243	-1.647	-2.981	H(143)	-11.096	2.805	-0.976
5 483	-1 950	-2 660	H(144)	-9 531	2 714	0.896
1 221	-1.611	1 705	H(145)	-7 206	2 161	0.521
0.044	1 400	1.775	11(143)	17.200	1 200	0.551
-0.740	-1.490	1.120	п(140)	17.202	-1.280	3.331
3.818	-1./52	1.940				
6.158	-1.884	1.559				
7.524	-2.086	-3.008				
9.980	-2.081	-2.731				
11.885	-1.984	-1.956				
14 014	-1 810	-1 202				
14 730	-1 429	3 511				
10 140	1 /00	1 002				
10.102	-1.4UZ	1.073				
2.392	-2.729	-4.005				

SI-IIc. ¹H hfc parameters of two CTDTBT monomers with different side chains.

Figure S4. The CTDTBT monomer with a -(CH₂)₃-CH₃ side chain.

Figure S5. The CTDTBT monomer with a (-CH₃) side chain.

Table S3. The hfc parameters of ¹H atoms attributed to the same positions on monomer frames.

A, MHz	H2	НЗ	H4	Н5	H7	H8	H9	H10	H11	H12	Н13	H14	N1	N2	N3
Ι	1.21	-3.3	-2.7	0.77	0.78	-5.7	-3.8	-2.66	-3.02	-0.44	-2.8	0.47	-1	0.04	0.7
II	1.34	-3.3	-2.8	0.74	0.3	-5.1	-4	-2.56	-3.36	-0.12	-3	0.68	-1	0.08	0.6

Note: I - (>N-(CH₂)₃-CH₃, II - (>N-CH₃).

Figure S6. The intensity *I* of EPR lines of polarons stabilized on the PANI chains (circles), polarons initiated by photons with $hv_{ph}=1.97$ eV on the PCDTBT chains (triangles) as well as PC₆₁BM radical anions (squares) at T = 77 K as function of the magnetic term B_1 of MW field. Top-to-bottom lines calculated from equation^{S1} $I = I_0B_1(1 + \gamma_e^2B_1^2T_1T_2)^{-3/2}$ with $T_1^{PANI}=3.2\times10^{-6}$ s, $T_2^{PANI}=6.1\times10^{-9}$ s, $T_1^P=1.1\times10^{-6}$ s, $T_2^P=2.1\times10^{-8}$ s, and $T_1^{mF}=7.7\times10^{-7}$ s, $T_2^{mF}=5.5\times10^{-8}$ s, respectively.

Reference:

(S1) Marumoto, K.; Takeuchi, N.; Ozaki, T.; Kuroda, S., ESR Studies of Photogenerated Polarons in Regioregular Poly(3-Alkylthiophene)-Fullerene Composite. *Synth. Met.* **2002**, *129*, 239-247.