———— ФОТОНИКА ———

УДК 541.64:537.3:543.422.27

ЭПР ИССЛЕДОВАНИЕ ФОТОГЕНЕРАЦИИ СПИНОВЫХ НОСИТЕЛЕЙ Зарядов в полимерных безфуллереновых композитах pbdb-t:it-м

© 2021 г. Е. И. Юданова^{а,} *, В. И. Криничный^а, Н. Н. Денисов^а

^аИнститут проблем химической физики РАН, просп. Академика Семенова, 1, Черноголовка, 142432 Россия

**E-mail: yudan@icp.ac.ru* Поступила в редакцию 11.01.2021 г. После доработки 05.03.2021 г. Принята к публикации 12.03.2021 г.

В работе представлены результаты ЭПР исследования нового органического фотовольтаического композита с нефуллереновым акцептором PBDB-T:IT-M. Определены параметры спектров ЭПР всех спиновых носителей зарядов, как локализованных, так и подвижных, возникающих в композите под действием света, которые хорошо согласуются с полученными ранее литературными данными. Зависимости концентрации спинов всех локализованных и подвижных носителей зарядов от энергии фотонов демонстрируют экстремальный рост в области 2.37 эВ, что совпадает с шириной запрещенной зоны полимерного композита PBDB-T:IT-M. Введение в систему микродобавок фотоактиватора 2,5-дифенилоксазола (PPO) улучшает морфологию композита за счет более интенсивного π - π взаимодействия между компонентами, что способствует увеличению обменного взаимодействия между ними и стабилизации числа спиновых носителей зарядов, в основном локализованных в энергетических ловушках полимерной матрицы. Обменное взаимодействие в композите между полимерами и дифенилоксазолом приводит к двукратному увеличению числа спинов в области энергии близкой к ширине запрещенной зоны композита.

Ключевые слова: безфуллереновые органические солнечные элементы, поляроны, светоиндуцированный ЭПР (СЭПР), перенос зарядов, рекомбинация зарядов, спиновая релаксация **DOI:** 10.31857/S0023119321040161

Проблема синтеза и исследования органических композитов является центральной в создании электронных [1, 2] и спинтронных [3] приборов нового поколения. В полимерных фотовольтаических композитах в качестве акцепторов электронов обычно используются производные фуллерена. Однако фуллереновые акцепторы характеризуются слабым поглощением фотонов в инфракрасной и красной областях оптического спектра, что существенно ограничивает энергопреобразующие свойства таких молекулярных приборов. Более перспективным оказалось использование нефуллереновых акцепторов электронов на основе малых молекул с сопряженной системой π-связей. Одним из наиболее оптимальных доноров электронов полимерных композитов с высокой энергопреобразующей эффективностью объемных гетеропереходов (ОГП) оказался поли[(2,6-(4,8-бис(5-(2-этилгексил)тиофен-2-ил)бензо[1,2-В:4,5-В']дитиофен))-альт-(5,5-(1',3'-ди-2-тиенил-5',7'-бис(2-этилгексил)бензо[1',2'-с:4',5'-с']дитиофен-4,8-диона)] (РВDВ-Т) [4]. На основе этого полимера и 3,9-бис(2-метилен-((3-(1,1-дицианометилен)-6/7-метил)-инданон))-5,5,11,11-тетракис(4-гексилфенил)-дитиен[2,3-д:2',3'-д']-с-индацено[1,2-б:5,6-б']дитиофен (IT-M) удалось создать безфуллереновый композит, в котором эффективность преобразования световой энергии в электрическую превышала 12% [5]. Такое увеличение эффективности стало возможным за счет ускорения диссоциации исходных экситонов и более медленной бимолекулярной рекомбинации носителей заряда в ОГП композита PBDB-T:IT-М [5]. Аналогичные параметры были достигнуты и в других солнечных ячейках с инвертированной архитектурой полимера PBDB-Т и нефуллереновых акцепторов на основе ITIC и IT-М [5, 6]. Данные устройства отличались хорошей термостабильностью, необходимой для продолжительной службы органических фотовольтаических систем. Полимер PBDB-Т также может быть использован в качестве транспортера дырок в широко используемых перовскитных солнечных элементах благодаря оптимальному сочетанию уровней энергии его занятой наивысшей молекулярной орбитали (НОМО) и валентной зоны перовскитов.

Носители заряда (дырки и электроны), возникаюшие в донорно-акцепторных полимерных системах под действием света парамагнитны. Это позволяет с успехом использовать метод светоиндуцированного ЭПР (СЭПР) для исследования процессов, протекающих в указанных композитах с участием таких спиновых носителей заряда [7, 8]. Например, в работе [9] было проведено исследование композита PBDB-T:ITIC методом СЭПР при частоте регистрации 94 ГГц. Это позволило получить основные слабо анизотропные магнитно-резонансные параметры спиновых ансамблей, возникающих в PBDB-Т и ITIC под действием света. Используемый в настоящей работе акцептор IT-М имеет комплементарную PBDB-T структуру и высокую эффективность преобразования света, что является следствием планарной конформации компонентов, приводящей к более интенсивным π–π взаимодействиям между ними. Однако детальных ЭПР исследований этого и других безфуллереновых композитов до настоящего времени проведено не было. Поэтому неясным остается влияние структурных, электронных и магнитных параметров составляющих таких композитов на их эффективные функциональные свойства.

Ранее нами была продемонстрирована возможность существенного улучшения электронных свойств органических солнечных ячеек на основе полимер : фуллереновых ОГП при добавлении в них малых органических молекул 1,2-бензопирона (ВР) и 2,5-дифенилоксазола (РРО), проявляющих свойства квази-2D-фотоактиваторов или сцинтилляторов [10, 11]. Было показано, что добавление ВР и PPO в композит P3DDT/PCBM улучшает морфологию образцов, что усиливает обменное взаимодействие между спинами подвижных и локализованных носителей заряда и в итоге увеличивает эффективную концентрацию подвижных спиновых носителей заряда. В работе [12] при изучении коллоидных перовскитов CsPbA₃ (A: Cl, Br, I) было обнаружено существенное увеличение радиолюминисцентного квантового выхода в системе при добавлении РРО. Авторы предложили механизм, согласно которому РРО играет ключевую роль в повышении радиолюминесценции нанокомпозитов CsPbA₃ в октане за счет поверхностной гибридизации галогенидных перовскитных нанокомпозитов с РРО в неполярной жидкой среде растворителя. Однако механизмы взаимодействия полимеров с 2D-фотоактиваторами в полимерных композитах требуют дальнейшего изучения.

Настоящая работа посвящена детальному ЭПР исследованию магнитно-резонансных, релаксационных и электронных свойств спинов носителей зарядов, возникающих под действием света различных частот в сополимерном композите с нефуллереновым акцептором PBDB-T:IT-M и анализу влияния на них микродобавки 2D-фотоактиватора PPO.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовались PBDB-Т и IT-М производства Ossila® (Великобритания) и PPO производства Aldrich® (США). Энергии верхней занятой HOMO и нижней незанятой молекулярных орбиталей LUMO для PBDB-Т равны: -5.33 и -3.53 эВ соответственно, а ширина запрещенной зоны E_g этого сополимера равна $E_g = 1.8$ эВ. Эти же параметры для IT-М составляют: -5.50, -3.35и $E_g = 2.15$ эВ соответственно [5]. В качестве малой добавки использовался органический фотоактиватор/сцинтилятор 2,5-дифенилоксазол (PPO) с $E_g = 3.79$ эВ и $E_{LUMO} = -3.31$ эВ [13].

Химические структуры этих компонентов схематически показаны на рис. 1.

Образцы для ЭПР измерений готовили следующим образом. Навеску 10 мг PBDB-T, растворяли в 1 мл хлорбензола. Полученный раствор обрабатывали ультразвуком мошностью 50 Вт в течение 10 мин в ультразвуковой бане DADI DA-968 и прогревали 10 мин при $T = 50^{\circ}$ С для лучшего растворения. Затем приготовили раствор IT-М в хлорбензоле в концентрации С = 10 мг/мл, и соединили растворы PBDB-Т и IT-М так, чтобы отношения компонентов PBDB-T:IT-М было 1:1, а концентрация по 10 мг/мл. Образец 1 представляет собой раствор композита без добавок (PBDB-T:IT-M). Образец 2 (PBDB-T:IT-M/PPO) получили путем добавки раствора РРО в хлорбензоле в раствор композита 1 так, чтобы соотношение РРО/полимер составляло 6 вес. %. Полученные растворы 1 и 2 наливали постепенно по каплям V = 5 мкл на керамические подложки до полного высыхания. На каждой подложке получали 25 мкл образца. Готовые образцы на керамической подложке дополнительно прогревали 30 мин при 160°С. Для оптических измерений 5 мкл растворов 1 и 2 наносили на кварцевые стекла с последующим удалением растворителя. Ультрафиолетовые/видимые /ближние инфракрасные спектры (UV/VIS/NIR) поглощения пленок композитов были получены на спектрофотометре Specord 250 (Analytik Jena) при T = 298 K.

ЭПР измерения проводились с использованием спектрометра ПС-100Х 3-см диапазона (9.7 ГГц) с максимальной мощностью СВЧ излучения 150 мВт и частотой ВЧ синхронного/фазового детектирования 100 кГц. Спектры СЭПР образцов регистрировали при 77 К путем погружения в кварцевую ячейку, наполненную жидким азотом. Отношение сигнал/шум спектров СЭПР увеличивали накоплением сигналов при многократном сканировании. Обработка и моделирование спектров СЭПР проводились с использованием программ

Рис. 1. Химические структуры соединений РВDВ-Т, ІТ-М и РРО.

ЕаsySpin и OriginLab. Вклады неспаренных электронов различных носителей заряда в эффективную восприимчивость образца определялись путем разложения его спектров СЭПР на составляющие, как было описано в [14–16]. Парамагнитная восприимчивость χ образца была определена путем двойного интегрирования спектров поглощения индивидуальных спиновых пакетов вдали от условий СВЧ насыщения. Освещение образцов проводилось непосредственно в резонаторе спектрометра с помощью кварцевого световода и источников ахроматического, белого света Luxeon®, мощностью 5 Вт, с цветовой температурой $T_c = 5000$ K, а также почти монохроматического световода и источников световода и источников световода и монохроматического световода и источников обърматического световода и источников зароматического, белого света Luxeon®, мощностью 5 Вт, с цветовой температурой $T_c = 5000$ K, а также почти монохроматического световода и источников световода и источников световода и источников световода и источников обърматического световода и источников обърматического световода и источников световода и источников обърматического световой температурой источников и источнико

та с энергией фотонов *hv*_{ph}: 1.32, 1.46, 1.61, 1.88, 1.97, 2.10, 2.34, 2.48, 2.64, 2.95 и 3.14 эВ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В отличие от акцепторов фуллереновых производных, имеющих максимум поглощения в области 400 нм, нефуллереновые акцепторы типа IT-М имеют узкую энергетическую щель в спектре и начинают поглощать при 700 нм в растворе. На рис. 2 приведены спектры поглощения пленок отдельных образцов, изучаемых в данной работе. IT-М имеет полосы поглощения в ультрафиолетовой области (198 и 227 нм), а также сильное поглощение в ВИД-ИК области 500-800 нм, что

Рис. 2. Спектры поглощения UV/VIS/NIR композитов 1 и 2, полученные при T = 298 К.

приписывают переходу НОМО π –LUMO π^* [5, 17]. PBDB-T проявляет полосы поглощения 250, 360, 580 и 612 нм [18]. Очевидно, что спектры поглощения PBDB-T и IT-M существенно перекрываются в видимой области и комплементарны друг другу. Максимум поглощения для PPO приходится на область 303–305 нм (~4.1 эВ) [13]. Из рис. 2 видно, что спектры поглощения композитов **1** и **2** слабо отличаются друг от друга, причем стоит отметить небольшой батохромный сдвиг пиков от PBDB-T и IT-M в композите **2** при добавлении PPO.

При освещении композитов 1 и 2 светом видимого спектра в образцах регистрируется спектр СЭПР (рис. 3), представляющий суперпозицию спектров отдельных спиновых носителей заряда положительных поляронов на PBDB-T – Р⁺ и анион-радикалов IT-М^{-•}. Деконволюция эффективных спектров СЭПР позволила раздельно получить значения g-факторов и ширин линий ЭПР $\Delta \mathbf{B}_{\mathsf{pp}}$ от составляющих спектральных вкладов поляронов и анион-радикалов IT-М в изученных композитах. Эти параметры приведены в табл. 1. Следует отметить хорошее соответствие значений параметров ЭПР, полученных нами и величинами, $g_{zz} = 2.0032$, $g_{yy} = 2.0022$, $g_{xx} = 2.0019$, полученными ранее в работе [6] для захваченных ловушками поляронов Р_{лок}^{+•} полимера PBDB-T, а также $g_{zz} = 2.0044, g_{yy} = 2.0034, g_{xx} = 2.0025,$ полученными для анион-радикалов IT-М^{-,}. Были выделены все составляющие спектров СЭПР от подвиж-

ных и локализованных спинов поляронов Р_{моб} и Р_{пок} и анион-радикалов IT-М в композитах. Моделирование эффективного спектра СЭПР и каждого из его вкладов позволило раздельно определить ширины линии ЭПР, спиновые восприимчивости χ и концентрации спинов для $P_{\text{моб}}, P_{\text{лок}}$ и IT-M_{лок} /IT-М_{моб} (рис. 3). Относительные значения концентрации спинов носителей зарядов были вычислены из спиновых восприимчивостей отдельных компонент моделированного спектра. На рис. 4 приведены зависимости концентрации спинов носителей зарядов, при различных энергиях фотовозбуждения образцов 1 и 2. Эти зависимости характеризуются пиковым максимумом концентраций для всех составляющих спинов в области 522 нм (2.37 эВ), что близко к значению ширины запрещенной зоны полимерного композита PBDB-T:IT-М. Характерный пик концентраций проявляется для всех спиновых носителей, как подвижных, так и локализованных, однако наибольший рост наблюдается для спинов, локализованных на полимере. При добавлении РРО в композите 2 количество локализованных поляронов возрастает более чем в 2 раза по сравнению с образцом 1 без РРО, в то время как число подвижных поляронов и анион-радикалов IT-М^{-•} изменяется слабо. Механизм влияния 2D-фотоактиватора РРО на образование спинов в композите пока не совсем ясен, поэтому его идентификация требует дальнейших исследований. В этой связи необходимо отметить, что при изучении коллоидных перовскитов CsPbA₃ (A: Cl, Br, I) с добавками PPO было обнаружено существенное увеличение ра-

Рис. 3. СЭПР спектры композитов **1** (а) и **2** (б), полученные экспериментально при непрерывном освещенных их белым светом с $T_c = 5000$ К при T = 77 К, а также рассчитанные с использованием магнитно-резонансных параметров, приведенных в табл. 1. Спектральные вклады захваченных спиновыми ловушками поляронов P_{nok}^{++} и анион-радикалов IT- M_{nok}^{-+} , а также мобильных пар этих носителей заряда, P_{mo6}^{++} -IT- M_{mo6}^{++} , показаны сплошными линиями.

диолюминисцентного квантового выхода в системе [12], что авторы объясняли поверхностной гибридизацией атомов азота N допанта PPO и Pb перовскита за счет обменного взаимодействия. Такого же обменного взаимодействия можно было бы ожидать между молекулами PPO и PBDB-T и IT-М в композите 2. Действительно, молекула РРО имеет плоское строение и расширенную π-систему. Она может легко встроиться из раствора при приготовлении композитов между цепочками полимеров и молекулой IT-M, увеличивая перекрывание энергетических зон и образуя Ван-дер-Ваальсовы связи между ними. Расположение уровня энергии наинизшей незанятой молекулярной орбитали (LUMO) молекулы РРО $E_{\text{LUMO}} = -3.31$ эВ, близко к значениям LUMO для IT-М и PBDB-T: -3.35 и -3.53 эВ соответственно. Однако в атоме азота N молекулы РРО существенный вклад в перенос энергии вносят также уровни LUMO, LUMO + 1, и LUMO + 4 [12], которые расположены выше по энергии уровней молекул PBDB-Т и IT-М и могут эффективно индуцировать перенос фотонов от PPO к PBDB-Т и IT-M по механизму безызлучательного переноса энергии. Для более обоснованных заключений о взаимодействии молекул в композитах мы планируем в дальнейшем провести расчеты методом

функционала плотности. Обменное взаимодействие между РРО и композитом приводит к увеличению числа спинов в области энергии близкой к ширине запрещенной зоны композита более чем в 2 раза. Кроме того добавка молекул РРО улучшает морфологию композита, что было показано в работе [11]. Таким образом, введение микродобавок РРО в композит способствует увеличению числа спиновых носителей зарядов в системе, которые в основном локализуются в энергетических ловушках на полимере.

На рис. 5 приведена кинетика рекомбинации подвижных и локализованных спинов в изучаемых фотовольтаических композитах 1 и 2 при выключении света. Этот процесс определяется числом и пространственным распределением спиновых ловушек, образующихся в ОГП композитов вследствие разупорядоченности их полимерных матриц. Как и в случае других композитов [4, 5], он может быть описан в рамках теории последовательных захватов и высвобождений подвижных носителей заряда высокоэнергетическими ловушками [19]. Согласно этому представлению, взаимодействие носителей заряда с такими ловушками должно приводить к временному изменению их концентрации вида:

270

Носители зарядов	g _{zz}	$g_{ m yy}$	g _{xx}	$g_{ m iso}$	$\Delta B_{\rm pp}^{\rm X}$	$\Delta B_{ m pp}^{ m Y}$	$\Delta B_{\rm pp}^Z$	$\Delta B_{\rm pp}^{\rm iso}$
Поляроны в PBDB-T	2.00327	2.00224	2.00146	2.00232	1.42	1.58	1.42	1.47
Анион-радикалы IT-M	2.00401	2.00304	2.00170	2.00292	1.56	1.70	1.56	1.61
PBDB-T: IT-M/PPO	2.00403	2.00299	2.00176	2.00293	1.57	1.73	1.57	1.62

Таблица 1. Параметры спектров СЭПР спинов поляронов Р⁺• полимера PBDB-T и анион-радикалов IT-М^{-•} в композите **1**, в третьей строчке приведены параметры для анион-радикала IT-М^{-•} в композите **2**

$$n(t) = n_0 \frac{\pi \kappa \delta (1+\kappa) \nu_{\rm d}}{\sin(\pi \kappa)} t^{-\kappa}, \qquad (1)$$

где $\kappa = k_B T/E_0$, E_0 – дисперсия энергий ловушек, δ – гамма-функция и v_d – частота прыжковой диффузии полярона при его высвобождении из ловушки. На рис. 5 приведены зависимости, рассчитанные из уравнения (1). Экспериментальные данные, полученные для поляронов, локализованных в матрицах исходного и РРО-модифицированного образцов **1** и **2**, хорошо описываются уравнением (1) с энергиями $E_0 = 0.0566$ и 0.0690 эВ соответственно. Следовательно, процесс рекомбинации долгоживущих спиновых носителей заряда, фотоиндуцированных в изученных композитах **1** и **2**, может быть описан в рамках указанной выше модели. Увеличение дисперсии энергии ловушек E_0 при модификации композита допированием PPO должно также свидетельствовать об изменении морфологии его полимерной матрицы. Отметим, что после выключения источника света остаточный сигнал ЭПР со стабилизированными носителями заряда оставался практически неизменным в течение суток при T = 77 К. Такой эффект замедления фотодеградации может способствовать улучшению работы энергопреобразующих и аккумулирующих устройств на основе полимерных композитов.

Рис. 4. Зависимости концентраций спиновых носителей заряда в композитах **1** (а) и **2** (б) от энергии источников света при *T* = 77 К: ● – суммарное количество спинов, ▲ – $P_{\pi \sigma \kappa}^{+*}$ поляроны, локализованные на полимере PBDB-T, ▼ – подвижные поляроны P_{mo6}^{+*} – IT- M_{mo6}^{+*} , ■ – локализованные анион-радикалы IT- $M_{\pi \sigma \kappa}^{-*}$.

ХИМИЯ ВЫСОКИХ ЭНЕРГИЙ том 55 № 4 2021

Рис. 5. Кинетика рекомбинации локализованных (заполненные точки) и подвижных (незаполненные точки) поляронов в композитах **1** и **2** после выключения источника белого цвета с $T_c = 5000$ К при T = 77 К. Верхней и нижней линиями показаны зависимости, рассчитанные из уравнения (1) с $E_0 = 0.0566$ и 0.0690 эВ соответственно.

ЗАКЛЮЧЕНИЕ

Было проведено фотоиндуцированное СЭПР исследование нового органического фотовольтаического композита с нефуллереновым акцептором PBDB-T:IT-М. Параметры спектров ЭПР, определенные для всех спиновых носителей зарядов, возникающих в композите, хорошо согласуются с полученными ранее литературными данными. Показана зависимость магнитно-резонансных параметров ЭПР образцов 1 и 2 от энергии возбуждающих фотонов. Зависимости концентрации спинов локализованных и подвижных носителей зарядов от энергии фотонов демонстрируют экстремальный рост в области 2.37 эВ (522 нм), что близко ширине запрещенной зоны полимерного композита PBDB-T:IT-М. Введение микродобавок РРО в композит PBDB-T:IT-М улучшает морфологию композита за счет более интенсивного π -- π взаимодействием между ними, что способствует увеличению обменного взаимодействия между компонентами композита и стабилизации в нем числа спиновых носителей зарядов, в основном локализованных в энергетических ловушках полимерной матрицы. Обменное взаимодействие в композите 2 приводит к двукратному увеличению числа спинов в области энергии, близкой к ширине запрещенной зоны композита.

ИСТОЧНИКИ ФИНАНСИРОВАНИЯ

Работа выполнена в рамках Государственного задания, номер Госрегистрации № АААА-А19-119032690060-9 при финансовой поддержке РФФИ, грант № 18-29-20011-мк.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Petty M.C.* Organic and Molecular Electronics: From Principles to Practice. 2nd: Wiley-Blackwell. 2018. P. 512.
- Hu W. ed. Organic Optoelectronics // Wiley-VCH Verlag Weinheim. 2013. P. 507.
- Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y., Ke X., Xiao Z., Ding L., Xia R., Yip H.-L., Cao Y., Chen Y. // Science. 2018. V. 361. № 6407. P. 1094.
- Weuchao Zhao, Deping Qian, Sunsun Li, Olle Inganas, Feng Gao, Jianhui Hou // Advanced Materials. 2016. V. 28. P. 4734.
- Li S., Ye L., Zhao W., Zhang S., Mukherjee S., Ade H., Hou J. Energy-Level // Advanced Materials. 2016. T. 28. № 42. P. 9423.
- Qi Wang, Shaoqing Zhang, Bowei Xu, Sunsun Li, Bei Yang, Wenxia Yuan, and Jianhui Hou // J. Phys. Chem. C. 2017. V. 121. № 9. P. 4825.
- Krinichnyi V.I. EPR spectroscopy of polymer : fullerene nanocomposites // Spectroscopy of Polymer Nanocomposites Thomas S., Rouxel D., Ponnamma D. 1. Amsterdam: Elsevier, 2016. P. 202.
- Niklas J., Mardis K.L., Banks B.P., Grooms G.M., Sperlich A., Dyakonov V., Beauprě S., Leclerc M., Xu T., Yue L., Poluektov O.G. // Physical Chemistry Chemical Physics. 2013. T. 15. № 24. P. 9562.

- 9. Van Landeghem M., Maes W., Goovaerts E., Van Doorslaer S. // J. Magnetic Resonance. 2018. T. 288. C. 1.
- 10. Krinichnyi V.I., Yudanova E.I., Denisov N.N., Bogatyrenko V.R. // Synthetic Metals. 2020. V. 267. P. 116462.
- 11. Юданова Е.И., Криничный В.И., Денисов Н.Н. // Химия высоких энергий. 2020. Т. 54(4). С. 269.
- Sangeun Cho, Sungwoo Kim, Jongmin Kim, Yongcheol Jo, Ilhwan Ryu, Seongsu Hong, Jae-Joon Lee, SeungNam Cha, Eun Bi Nam, Sang Uck Lee, Sam Kyu Noh, Hyungsang Kim, Jungwon Kwak, Hyunsik Im // Light: Science & Applications. 2020. V. 9. P. 156.
- 13. Silva D.L., De Boni L., Correa D.S., Costa S.C.S., Hidalgo A.A., Zilio S.C., Canuto S., Mendonca C.R. // Optical Materials. 2012. T. 34. № 7. C. 1013.

- 14. *Krinichnyi V.I.* EPR spectroscopy of polymer:fullerene nanocomposites / Ed. by *S. Thomas, D. Rouxel, D. Ponnamma*. Amsterdam. 2016. P. 202.
- 15. *Poluektov O.G., Filippone S., Martín N., Sperlich A., Deibel C., Dyakonov V.J.* // Phys. Chem. B. 2010. V. 14. Nº 45. P. 14426.
- 16. Юданова Е.И., Криничный В. И., Богатыренко В. Р., Денисов Н. Н., Назаров Д.И. // Химия Высоких Энергий. 2019. Т. 53. № 3. С. 214.
- H. Bin, Zhi-Guo Zhang, L. Gao, S. Chen, L. Zhong, L.i Xue, Ch. Yang and Y. Li. // J. Am. Chem. Soc. 2016, V. 138. P. 4657.
- 18. Wenchao Zhao, Sunsun Li, Shaoqing Zhang, Xiaoyu Liu, and Jianhui Hou // Adv. Mater. 2017. V. 29. P. 1604059.
- Tachiya M., Seki K. // Phys. Rev. B. 2010. V. 82. № 8. P. 085201.