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PREFACE 

Recent years have been characterized by widespread development of electron 
paramagnetic spectroscopy (EPR spectroscopy) in the millimeter and submil- 
limeter ranges, which seems to  be more promising in the studies of condensed 
systems. However, this development faces some difficulties associated mainly 
with a weak and complicated element base (SHF elements, including a cavity, 
cryogenic equipment, etc.), sample preparation procedure, and appropriate 
investigation methods. 

From its appearance in the 1960s, the idea of broadening the EPR spec- 
troscopy frequency range seemed to be mainly an intellectual game without 
concrete theoretical and practical future application. It was stipulated mainly 
by fragmentary investigations of specific objects in the millimeter EPR range, 
which could not enable full and clear arguments, thus proving the neces- 
sity of the development of EPR spectroscopy directed towards the increase 
of registration frequency. However, the elaboration and creation of the first 
multifunctional universal 2-mm wave band EPR spectrometer a t  the Russian 
Institute of Chemical Physics allowed the successful investigation of various 
condensed systems (solutions, polymers, etc.), in which complex molecular 
and relaxation processes occur, including slow anisotropic motions, cross- 
relaxation, etc. This development resulted in a wave of enthusiasm among 
chemists, physicists and biologists, and an explosive development of appli- 
cations of various methods. However, today the importance of 2-mm EPR 
spectroscopy is not its successful application but the potential to  obtain new 
qualitative information on well-known compounds and to understand various 
phenomena, from specific interactions and correlated relaxation in condensed 
media to charge transfer in biological systems and polymer semiconductors. 
This new appreciation of the essence of quantum mechanical phenomena lies 
beyond the framework of electron paramagnetic resonance as a special disci- 
pline and no doubt will promote a breakthrough in such other fields as biology, 
physics, and chemistry. 

The present book appears as a monograph on the application of high- 
frequency 2-mm EPR spectroscopy to the study of physical-chemical proper- 
ties of various condensed systems and their interpretation from the standpoint 
of modern conceptions of molecular physics. The methods of measurements 
a t  2-mm wave band EPR considered here found their application in the in- 
vestigation of both simple (solutions, ion crystals) and complex (biopolymers, 
enzymes, conducting polymers, ion-radical salts, etc.) condensed systems, 
and their potential is not yet exhausted. 2-mm wave band EPR spectroscopy 
enables the profound investigation of the structure, dynamics, other specific 
characteristics of radical centers and their local environment, and elementary 
charge transfer processes in these systems. 

The monograph contains mainly the original results, obtained by the author 
in the last decade, of the investigation of various model, biological, and other 
high-molecular weight compounds by 2-mm wave band EPR spectroscopy. 
Therefore, special attention is paid to  the description of various practical 
applications of the method in the study of liquids and solids. 

The first chapter follows the Introduction, which appears as a brief sur- 
vey of the main stages of millimeter EPR spectroscopy development. Chap- 
ter 1 presents a concise summary of the theoretical fundamentals of EPR 
spectroscopy and a body of mathematics necessary for the interpretation of 
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experimental results. It considers the most important magnetic resonance 
parameters of paramagnetic centers, the processes of spin relaxation, and the 
factors affecting i t .  Among them various experimental approaches of EPR 
spectroscopy are considered such as steady-state signal saturation, the sat- 
uration transfer method, and the method of spin label and probe, which is 
necessary for the investigation of various properties of condensed systems. 

The success of 2-mm EPR spectroscopy is attributed mainly to a high 
spectral resolution over the g-factor. Chapter 2 describes the reason for the 
choice of the 2-mm wave band for registering EPR spectra of organic radicals, 
and the advantages of 2-mm wave band EPR spectroscopy are manifested by 
using organic peroxide and nitroxide radicals in model systems. This chapter 
contains the description of the development of steady-state saturation of spin- 
packets, microspin label and probe, macrospin probe, and saturation transfer 
methods applied to  2-mm wave band registration, which enables a more ac- 
curate and complete analysis of dynamic and relaxation properties of radical 
microenvironments in condensed systems. 

Chapter 3 starts with the analysis of the restrictions of the common EPR 
method in the study of biological systems and exhibits the data, confirming 
the advantages of 2-mm EPR spectroscopy in investigating the structure, 
dynamics, and polarity of radical microenvironments in real biological objects. 

And finally, Chapter 4 contains the discussion of the principal results ob- 
tained by using 2-mm wave band EPR for studying structural and electrody- 
namic peculiarities of the known conducting compounds, such as conjugated 
polymers, ion-radical salts, and high-temperature superconductors. 

In order t o  appeal to  a wide range of readers, the book provides the exam- 
ples of experimental investigation of various classes of compounds, offering a - 
more complete study of the systems. 

Although this monograph is devoted almost entirely to  EPR spectroscopy, 
it should be emphasized that it might be considered only as one of numerous 
useful and fruitful methods on the general background of physics and chem- 
istry of condensed media. All the results obtained with this method attain 
their whole significance only by being combined with the data obtained by 
other methods. The results, presented in Sections 2.IV, 3.11, and 4.1 may be 
considered as examples. 

The author hopes that this book will be valuable to radio spectroscopists 
and investigators in neighboring branches of science such as molecular biology, 
radiation and photochemistry, organic and analytical chemistry, liquid and 
solid state physics, and for students specializing in chemistry, and 
biology. 

The author is very grateful to his teachers Professor Ya. S. Lebedev and 
Professor G. I. Likhtenstein, who promoted the development of his interests 
in classic and millimeter EPR spectroscopy. 

The author expresses his gratitude to his colleagues, who contributed by 
carrying out the experiments and taking part in the discussion. The author 
is especially grateful t o  0. Ya. Grinberg, A. A. Dubinski, A. V. Kulikov, 
L. M. Goldenberg, I. B. Nazarova, S. D. Cheremisov, H.-K. Roth, K. Liiders, 
F. Lux, A. E. Pelekh, S. A. Brazovskii, L. I. Tkachenko, and 0. N. Efimov. 

The author is also grateful to  A. V. Lebedeva for her help in preparation 
of the figures. 
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INTRODUCTION 

EPR spectroscopy is one of the most widely used and productive physical 
methods in structural and dynamic studies of various condensed systems that 
contain free radicals, ion-radicals, molecules in triplet states, transition metal 
complexes, and other paramagnetic centers (PCs). 

E P R  spectroscopy became a powerful investigation tool after Zavoiskii car- 
ried out the first electron relaxation studies in salts.' From that moment this 
method began t o  play an important role and is used successfully in physical, 
chemical, and biological investigations. Many fundamental and general works 
concerning this field of are evidence of this process. 

This method can be applied the most effectively to the study of elemen- 
tary chemical reactions. Voevodskii, who was the first in these investigations, 
found2' that transformation mechanisms in oxidation and cracking, radioly- 
sis and photolysis, homogeneous and heterogeneous catalysis, and chemical 
processes were stipulated mainly by the properties of P C  and especially free 
radicals, involved in these processes. 

E P R  has been widely used in recent decades for solving such important 
problems of chemical and biological physics as the elucidation of the role of 
electron transport in biological processes, the effect of molecular dynamics in 
viscous and heterogeneous media on the rate and mechanism of transforma- 
tions which occur there,61'6,18 etc. 

EPR gave rise to  the development of the method of spin labels and probes, 
suggested by Hamilton and ~ c C o n n e l 1 , ~ ~  which provided significant progress 
in the study of biological substrates, polymers, and other condensed sys- 
t e m ~ . ~ ~ - ~ ~  The success was achieved due to  the unique properties of nitrox- 
ide radicals, which were commonly used as spin labels and probes, and the 
development of biochemistry. However, the utilization of the EPR method as 
a sensitive and informative i n s t r ~ m e n t ~ ~ ~ ~ ~  played a dominant role in these 
investigations. 

In solving these problems the restrictions of the EPR method emerged 
clearly, being associated in particular with the fact that the signals of organic 
free radicals were registered in a narrow magnetic field range, which resulted in 
the overlapping of the lines of complex spectra or spectra of different radicals 
with close ~pfactor values. Thus, new experimental techniques that improve 
the efficiency of the method and open absolutely new fields of application have 
been recently developed. They are laser spectroscopy of magnetic resonance 
a t  submillimeter3' and n e a ~ i n f r a r e d ~ ~  wave bands, which are generally used 
to study radical reactions in gas phase; electron spin echo spectroscopy,33~34 
which is used mainly to study PC in solids; different methods based on the 
effect of spin polarization, in which the EPR signal is registered optically35 or, 
depending on the change of chemical yield;36-3%ethod~ of double electron- 
nuclear r e s o n a n ~ e ; ~ ~ ~ ~ ~  EPR spectroscopy with microwave frequency (MWF) 
saturation t r a n ~ f e r ; ~ '  EPR in inhomogeneous fields;42 and some others. 

However, most of these methods may be applied only to solve specific 
problems and investigate special objects. The transition to  higher magnetic 
fields and registration frequencies is known to be the most common method 
to elevate the precision and informativeness of the method. 

This practice was already used successfully to enhance the sensitivity and 
resolution of nuclear magnetic resonance ( N M R ) , ~ ~  which is complementary 
to EPR.  However, a similar approach was almost not applied to widen EPR 



spectroscopy possibilities. This may be explained by the fact that the element 
base of 3-cm and 8-mm wave bands was found to  be suitable initially, since it 
satisfied the standards of resolution and s e n ~ i t i v i t ~ , ~ ~ ~ ~  and, thus, was widely 
used. Besides, some difficulties exist with the selection of MWF radiation 
source of sufficient power in the millimeter wave band as well as with the 
generation of strong magnetic fields with the intensity of several Tesla. 

In the 1970s an E P R  spectrometer of 2-mm wave band containing supercon- 
ducting solenoid44 was designed a t  the Institute of Chemical Physics, Russia, 
for physical-chemical investigations. I t  was the first in a series of analogous de- 
vices, which are still unique. These spectrometers are especially characterized 
by a high spectral resolution and an absolute sensitivity of 5 .  10'' spin/T. 

This book reports on the possibilities of 2-mm wave band EPR spectroscopy 
of high spectral resolution over g-factor and reviews the principal results ob- 
tained in the investigation of various condensed systems at  this wave band. 

The first chapter includes a brief description of some EPR fundamentals, 
which are t o  be used to  interpret experimental results. 

The second chapter contains a consideration of the methodic foundation of 
2-mm wave band E P R  spectroscopy, and some results of the study of model 
systems are presented, which reveal the possibilities of high resolution over 
g-factor in the study of different condensed systems. 

The results presented in the third chapter confirm the principal advantages 
of the method in investigating the structure, conformation, and molecular 
dynamics of biological objects with spin labels and probes. 

The fourth chapter considers 2-mm EPR spectroscopy possibilities in the 
study of a large group of organic polymer semiconductors and other conduct- 
ing compounds. 
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