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Preface

The past two decades have seen extraordinary progress in the synthesis and 
study of organic conjugated polymers and their nanocomposites. This was 
mainly due to the widespread utilization of such systems in molecular elec-
tronics and spintronics. One of the main scientific goals is to reinforce the 
human brain with computer ability. However, a convenient modern com-
puter technology is based on three-dimensional silicon crystals, whereas 
the human organism consists of lower-dimensional biological systems. 
Therefore, the combination of a future computer based on organic conduct-
ing polymers of low dimensions with biopolymers is expected to consider-
ably increase the power of human apprehension. This is why understanding 
the major factors determining specific spin charge-transfer processes in con-
jugated polymers is now a hot topic in organic molecular science.

The charge in such systems is transferred by topological excitations, soli-
tons, and polarons characterized by spin and high mobility along polymer 
chains. This stipulated the use of electron paramagnetic resonance (EPR) 
spectroscopy as a unique direct tool for more efficient study and monitoring 
of reorganization, relaxation, and dynamic processes carried out in polymer 
systems. Twenty years have passed since the publication of the first book 
[122] in which the basic methodological approaches of millimeter wave-
band EPR spectroscopy in the study of various model, biological, and poly-
mer systems were described. It was demonstrated that the study of such 
objects at higher registration frequencies allows increasing sufficiently the 
efficiency of the method to obtain qualitative new information on organic 
solids and to solve various scientific problems. During this time, the vari-
ety of EPR techniques was expanded. For example, the Bruker Corporation 
developed and started supplying scientific centers with EPR spectrometers 
operating at wide (1–263 GHz) wavebands. Besides, home-made millimeter 
waveband EPR spectrometers were constructed and widely used in differ-
ent scientific centers.

This book’s focus is on the use of the technique in conjunction with 
spin label and probe, steady-state saturation, saturation transfer, and con-
ductometric methods in the study of initial and nanomodified conjugated 
polymers. Chapter 1 of this book discusses the fundamental properties of 
conjugated polymers in which a charge is transferred by topological distor-
tions, solitons, polarons, and bipolarons. The theoretical background of mag-
netic resonance, relaxation, and dynamic parameters of such charge carriers 
in conjugated polymers is briefly explicated in Chapter 2. It could be a valu-
able introduction to students interested in EPR, particularly of conjugated 
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polymers. The instrumentation and experimental details are described 
briefly in Chapter 3. Chapter 4 is devoted to the original data obtained 
by an X-band to D-band (30–2 mm, 9.7–140 GHz) EPR study of the nature, 
relaxation, and dynamics of paramagnetic centers delocalized on nonlinear 
charge carriers as well as the mechanisms of charge transfer in some con-
jugated polymers differently modified with nanoadducts. The use of some 
conjugated polymers as electron donors in organic composites is described 
in Chapter 5. Chapter 6 reveals the possibility to handle charge transport in 
some multispin polymer composites by using spin–spin exchange. Chapter 7 
presents concluding remarks, including the prospects of the study of organic 
polymer systems for the further construction of novel elements of molec-
ular electronics. Therefore, this book documents both background knowl-
edge and the results of latest research in the field. Unique features include 
comparisons of data obtained at different microwave frequencies and mag-
netic fields. Coherent treatment of the subject by the leading Chernogolovka 
high-field EPR laboratory covers the theoretical background as well as state-
of-the-art research both in terms of instrumentation and application to con-
jugated polymer systems.

The author hopes that the multifrequency EPR spectroscopy and related 
approaches will be of interest to students and scientists and will encourage 
them to apply EPR methods more widely to polymeric materials. This book 
covers a wide range of specific approaches suitable for analyzing processes 
carried out in polymer systems with paramagnetic adducts providing read-
ers with knowledge of the underlying theory, fundamentals, and appli-
cations. These, no doubt, help bridge the gap between the chemistry and 
physics communities and stimulate research in this fascinating and impor-
tant field. The goal of this book is not to make the reader an expert in the 
field, but rather to provide enough information about the EPR spectroscopic 
method for the reader to determine how the available approaches can be 
used to solve a particular polymer problem. This book reviews in detail 
the main experimental methodological approaches developed by our team 
for the study of various organic condensed systems. It provides an outlook 
for future developments and references for further reading. This informa-
tion is essential for postdoctoral scientists, professionals, academics, and 
graduate students working in this field as well as analytical chemists and 
chemical engineers designing and studying novel molecular electronic 
objects. Besides, the author would feel well rewarded if this book helps 
resolve some of the problems of finding useful information on properties 
of conjugated polymers and their composites in the ever-growing scientific 
literature.
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The past two decades have seen extraordinary progress in synthesis and 

study of organic conjugated polymers and their nanocomposites. 

Utilization of such systems in molecular electronics and spintronics to 

empower the human brain with computer capabilities is eagerly 

anticipated. Modern computer technology is based on three-dimensional 

silicon crystals, whereas human organisms consist of lower-dimensional 

biological systems, so the combination of a future computer based on 

organic conducting polymers of lowed dimensionality with biopolymers is 

expected to considerably increase the power of human comprehension. 

Thus understanding the major factors determining specific spin charge 

transfer processes in conjugated polymers is now a hot topic in organic 

molecular science.  

 

Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their 

Nanocomposites reviews the main experimental methodological 

approaches in detail for the study of various organic condensed systems 

and provides an outlook on future developments and references for 

further reading.  Covering a wide range of specific approaches the author 

provides readers with knowledge of the underlying theory, fundamentals, 

and applications and bridges the gap between the chemistry and physics 

communities.  

 

The goal of the book is not to make the reader an expert in the field, but 

rather to provide enough information about the EPR spectroscopic 

method that the reader can determine how the available approaches can 

be used to solve a particular polymer problem. The book is essential 

reading for postdoctoral scientists, professionals, academics and graduate 

students working in this field as well as analytical chemists and chemical 

engineers designing and studying novel molecular electronic objects. 
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